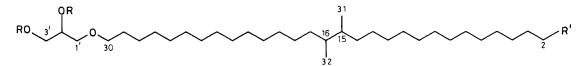
A New 15,16-Dimethyl-30-glyceryloxytriacontanoic Acid from Lipids of *Thermotoga* maritima

Mario De Rosa,^{a,b} Agata Gambacorta,^a* Robert Huber,^c Virginia Lanzotti,^a Barbara Nicolaus,^a Karl O. Stetter,^c and Antonio Trincone^a


^a Istituto per la Chimica di Molecole di Interesse Biologico del C.N.R., via Toiano 6, 80072-Arco Felice, Naples, Italy
^b Istituto di Biochimica delle Macromolecole, I Facoltà di Medicina e Chirurgia dell'Università, Naples, Italy
^c Lehrstuhl fur Mikrobiologie, Universitat Regensburg, Federal Republic of Germany

The lipids of the thermophilic anaerobic eubacterium *Thermotoga maritima* are mainly based on: (a) $n-C_{14}$, $n-C_{16}$, and $n-C_{18}$ fatty acids; (b) 15,16-dimethyltriacontanedioic acid (diabolic acid); (c) a new compound identified by chemical and degradative evidence as 15,16-dimethyl-30-glyceryloxytriacontanoic acid.

Here we report data on lipid structures of Thermotoga maritima, a new anaerobic eubacterium growing at temperatures up to 90 °C, isolated from geothermally heated sea floors in Italy and the Azores.¹ Lyophilized cells afforded a 7-8% yield of lipids, which were refluxed with methanol/HCl (9:1) for 6 h. The CHCl₃-soluble fraction of the methanolysis mixture was chromatographed on a silica-gel column. Light petroleum/Et₂O (99:1) eluted a mixture of fatty acid methyl esters (ca. 36% of the CHCl₃-soluble fraction) identified by g.l.c. as methyl myristate (12%), palmitate (86%), and stearate (1%); light petroleum/Et₂O (98:2) eluted a longchain dicarboxylic dimethyl ester (ca. 33% of the CHCl₃soluble fraction); $CHCl_3$ eluted a novel compound (1a) (ca. 30%) and trace amounts of an identified compound; CHCl₃/ MeOH (80:20) gave a more polar, and as yet unidentified compound (1%).

The long chain dicarboxylic dimethyl ester [R_f ca. 0.4 on t.l.c., silica gel in light petroleum/Et₂O (98:2)] was identified as dimethyl 15,16-dimethyltriacontanedioate (trivial name, diabolic acid) by a comparison of its physical properties {[α]_D,¹H and ¹³C n.m.r. electron-impact mass spectrometry (E.I.M.S.)} with those reported in the literature.²

The new compound (1a) [R_f ca. 0.5 on t.l.c., silica gel in CHCl₃/MeOH (95:5)] was acetylated with Ac₂O/pyridine (9:1) at 60 °C overnight. The acetylated derivative (1b) [R_f 0.95 on t.l.c. silica gel, CHCl₃/MeOH (95:5)] was purified by silica gel column chromatography with CHCl₃ as eluant. The E.I.M.S. of diacetate (1b), besides M^+ at m/z 668 (0.1%), includes diagnostically important peaks at m/z 637 (M^+ - CH₃O; 3.1%), 609 (M^+ – OCOCH₃; 4.1), 608 (M^+ – AcOH; 4.1), 595 (M^+ – CH₂OAc; 0.9), 565 (M^+ – CH₂OAc and Ac; 7.2), 548 (M^+ – 2AcOH; 4.3), 535 (M^+ – CH₂OAc and

(1) **a**; R = H, R' = CO_2Me **b**; R = Ac, R' = CO_2Me **c**; R = H, R' = CH_2OH AcOH; 6.0), 523 (M^+ – CH(OAc)-CH₂OAc; 7.1), 493 [M^+ – C₇H₁₁O₅; C(30)–O cleavage; 3.9], 491 (M^+ – CH₃OH and CHOAc–CH₂OAc; 4.0), 479 [M^+ – C₈H₁₃O₅; C(29)–C(30) cleavage; 1.7], 477 [M^+ – CH₃OH and C₇H₁₁O₄; C(1')–O cleavage; 1.7], 461 [M^+ – CH₃OH and C₇H₁₁O₅; C(30)–O cleavage; 8.7], 339 [M^+ – AcOH and C₁₇H₃₃O₂; C(15)–C(16) cleavage; 32.9], 159 [loss of C₃₃H₆₅O₃; C(1')–O cleavage; 100], thus localizing the ether linkage at the 1'-position of glycerol and *vic*-dimethyl branching at the 15-16 position of the C₃₀ aliphatic chain.

The ¹H n.m.r. spectrum (CDCl₃) of (**1a**) shows in addition to the CH₃O signal (δ 3.67) significant resonances at δ 3.88 (1 H, br.m, H-2'), 3.72 (2 H, br.d, H-3'), 3.53 (2H, d, H-1'), 3.46 (2 H, t, H-30), 2.30 (2 H, t, H-2), 0.73 (6 H, d, H-31 and H-32). The ¹H n.m.r. spectrum of (**1b**) shows singlets due to two acetyl groups at δ 2.06 and 2.08, a doublet at δ 3.54 due to the 1'-protons, and an ABX system centred at δ 4.25 and 5.18 due to the 3' and 2' protons, respectively. The ¹³C n.m.r. data of (**1a**) fully confirm the 15,16-

The ${}^{13}C$ n.m.r. data of (1a) fully confirm the 15,16dimethyl-30-glyceryloxytriacontanoic acid structure. In particular the steric compression shift of methyl resonance to higher field (${}^{13}C$ n.m.r.: δ 14.5), also observed for diabolic Full characterization of complex lipids is in progress.

We thank Mr. E. Esposito and R. Turco for assistance.

Received, 18th March 1988; Com. 8/01093E

References

- R. Huber, T. A. Langworthy, H. Konig, M. Thomm, C. R. Woese, U. B. Sleytr, and K. O. Stetter, Arch. Microbiol., 1986, 144, 324.
- 2 R. A. Klein, G. P. Hazlewood, P. Kemp, and R. M. C. Dawson, Biochem. J., 1979, 183, 691.
- 3 F. Snyder, M. L. Blank, and R. L. Wykle, J. Biol. Chem., 1971, 246, 3639.
- 4 M. De Rosa, A. Gambacorta, B. Nicolaus, B. Chappe, and P. Albrecht, *Biochim. Biophys. Acta*, 1983, **753**, 249.